Step of Proof: bij_imp_exists_inv
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
bij
imp
exists
inv
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4. Bij(
A
;
B
;
f
)
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
)
latex
by ((Repeat (Unfolds ``biject inject surject`` 4))
CollapseTHEN (D 4))
latex
C
1
:
C1:
4.
a1
,
a2
:
A
. (
f
(
a1
) =
f
(
a2
))
(
a1
=
a2
)
C1:
5.
b
:
B
.
a
:
A
. (
f
(
a
) =
b
)
C1:
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
)
C
.
Definitions
Surj(
A
;
B
;
f
)
,
Inj(
A
;
B
;
f
)
,
P
&
Q
,
Bij(
A
;
B
;
f
)
origin